Assessment and Student Success in a Differentiated Classroom

Over the last few years, increasing attention has been focused on the development of children’s acquisition of 21st-century skills and digital competences. Consequently, many education scholars have argued that teaching technology to young children is vital in keeping up with 21st-century employment patterns. Technologies, such as those that involve robotics or coding apps, come at a time when the demand for computing jobs around the globe is at an all-time high while its supply is at an all-time low. There is no doubt that coding with robotics is a wonderful tool for learners of all ages as it provides a catalyst to introduce them to computational thinking, algorithmic thinking, and project management. Additionally, recent studies argue that the use of a developmentally appropriate robotics curriculum can help to change negative stereotypes and ideas children may initially have about technology and engineering. The Handbook of Research on Using Educational Robotics to Facilitate Student Learning is an edited book that advocates for a new approach to computational thinking and computing education with the use of educational robotics and coding apps. The book argues that while learning
about computing, young people should also have opportunities to create with computing, which have a direct impact on their lives and their communities. It develops two key dimensions for understanding and developing educational experiences that support students in engaging in computational action: (1) computational identity, which shows the importance of young people’s development of scientific identity for future STEM growth; and (2) digital empowerment to instill the belief that they can put their computational identity into action in authentic and meaningful ways. Covering subthemes including student competency and assessment, programming education, and teacher and mentor development, this book is ideal for teachers, instructional designers, educational technology developers, school administrators, academicians, researchers, and students.

Theorizing STEM Education in the 21st Century

Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.

A New Era of Science Education

As technology continues to develop and prove its importance in modern society, certain professions are acclimating. Aspects such as computer science and computational thinking are becoming essential areas of study.
Implementing these subject areas into teaching practices is necessary for younger generations to adapt to the developing world. There is a critical need to examine the pedagogical implications of these technological skills and implement them into the global curriculum. The Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education is a collection of innovative research on the methods and applications of computer science curriculum development within primary and secondary education. While highlighting topics including pedagogical implications, comprehensive techniques, and teacher preparation models, this book is ideally designed for teachers, IT consultants, curriculum developers, instructional designers, educational software developers, higher education faculty, administrators, policymakers, researchers, and graduate students.

Encyclopedia of Science Education

Women of Color In STEM

STEM Teaching: An Interdisciplinary Approach breaks from the more historical idea of making knowledge within disciplines and seeks to engage the reader in a growing conversation that is gaining momentum and is focused on an ‘interdisciplinarity of STEM education’, which seeks to embrace and/or present emerging perspectives on the standards.

Standards for K-12 Engineering Education?

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them. Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well
as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.

Teaching Primary Science Constructively

International Academic Conference in Prague 2017

K-12 STEM Education: Breakthroughs in Research and Practice

The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students’ learning experience and maximize competency in the areas of science, technology, engineering, and mathematics. Improving K-12 STEM Education Outcomes through Technological Integration focuses on current research surrounding the effectiveness, performance, and benefits of incorporating various technological tools within science, technology, engineering, and mathematics classrooms. Focusing on evidence-based approaches and current educational innovations, this book is an essential reference source for teachers, teacher educators, and professionals interested in how emerging technologies are benefiting teaching and/or learning efficacy.

Critical, Transdisciplinary and Embodied Approaches in STEM Education

"This reference brings together an impressive array of research on the development of Science, Technology, Engineering, and Mathematics curricula at all educational levels"--Provided by publisher.

Secondary STEM Educational Reform

This book provides a platform for international scholars to share evidence for effective practices in integrated STEM education and contributes to the theoretical and practical knowledge gained from the diversity of approaches. Many publications on STEM education focus on one or two of the separate STEM disciplines without considering the potential for delivering STEM curriculum as an integrated approach. This publication analyzes the efficacy of an integrated STEM curriculum and instruction, providing evidence to examine and support various integrations. The volume focuses on the problems seen by academics working in the fields of science, technology, engineering and mathematics (STEM) and provides valuable, high quality research outcomes and a set of valued practices which have demonstrated their use and viability to improve the quality of integrated STEM education.

STEM Education: An Emerging Field of Inquiry
The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education--science, technology, and mathematic--but not for engineering. To date, a small but growing number of K-12 students are being exposed to engineering-related materials, and limited but intriguing evidence suggests that engineering education can stimulate interest and improve learning in mathematics and science as well as improve understanding of engineering and technology. Given this background, a reasonable question is whether standards would improve the quality and increase the amount of teaching and learning of engineering in K-12 education. The book concludes that, although it is theoretically possible to develop standards for K-12 engineering education, it would be extremely difficult to ensure their usefulness and effective implementation. This conclusion is supported by the following findings: (1) there is relatively limited experience with K-12 engineering education in U.S. elementary and secondary schools, (2) there is not at present a critical mass of teachers qualified to deliver engineering instruction, (3) evidence regarding the impact of standards-based educational reforms on student learning in other subjects, such as mathematics and science, is inconclusive, and (4) there are significant barriers to introducing stand-alone standards for an entirely new content area in a curriculum already burdened with learning goals in more established domains of study.

Engineering Instruction for High-Ability Learners in K-8 Classrooms

Digital integration is the driving force of teaching and learning at all levels of education. As more non-traditional students seek credentialing, certification, and degrees, institutions continue to push the boundaries of innovative practices to meet the needs of diverse students. Programs and faculty have moved from merely using technology and learning management systems to unique and innovative ways to engage learners. The Handbook of Research on Innovative Digital Practices to Engage Learners is an essential scholarly publication that offers theoretical frameworks, delivery models, current guidelines, and digital design techniques for integrating technological advancements in education contexts to enforce student engagement and positive student outcomes. Featuring a wide range of topics such as gamification, wearable technologies, and distance education, this book is ideal for teachers, curriculum developers, instructional designers, principals, deans, administrators, researchers, academicians, education professionals, and students.

Integrated Approaches to STEM Education

Carol Ann Tomlinson and Tonya R. Moon take an in-depth look at assessment and show how differentiation can improve the process in all grade levels and subject areas. After discussing differentiation in general, the authors focus on how differentiation applies to various forms of assessment--pre-assessment, formative assessment, and summative assessment--and to grading and report cards. Readers learn how differentiation can --Capture student interest and increase motivation --Clarify teachers' understanding about what is most important
to teach --Enhance students' and teachers' belief in student learning capacity; and --Help teachers understand their students' individual similarities and differences so they can reach more students, more effectively. Throughout, Tomlinson and Moon emphasize the importance of maintaining a consistent focus on the essential knowledge, understandings, and skills that all students must acquire, no matter what their starting point. Detailed scenarios illustrate how assessment differentiation can occur in three realms (student readiness, interest, and learning style or preference) and how it can improve assessment validity and reliability and decrease errors and teacher bias. Grounded in research and the authors' teaching experience, Assessment and Student Success in a Differentiated Classroom outlines a common-sense approach that is both thoughtful and practical, and that empowers teachers and students to discover, strive for, and achieve their true potential.

Asia-Pacific STEM Teaching Practices

This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the current curriculum and instructional materials are not sufficient to practice inquiry nor to integrate more than one or two disciplines with science as is required in STEM integrated teaching. Finally, this study recommends a framework for science education reform for Bangladesh based upon a combination of successful international science education reformation practices.

Elementary Teachers' Perceptions of Science, Technology, Engineering, and Mathematics Education
in K-5 Schools

Data were collected from 32 teachers using mixed methods to investigate teachers' perceptions of online professional development (PD) offered through a school-community partnership. The partnership between multiple school districts nationwide and National Aeronautics and Space Administration (NASA) provided teachers with an online Science, Technology, Engineering and Mathematics (STEM) PD course called MicroGX. A thorough analyses of data from two surveys, observations, and documents were used to answer the primary questions: 1) What components of MicroGX are deemed effective from the teachers' perspective? 2) How does the effectiveness of MicroGX compare with other online PD from the teachers' perspective? The data from this study provide evidence that subjects perceive MicroGX as a positive experience with many effective components that are more effective than participation in other online PD. Survey data show a majority of the subjects feel the MicroGX course was more of a positive than negative experience. All subjects would recommend this course to another teacher and overall, subjects were most satisfied with the interaction with others, resources, support, content, and content delivery. Ninety-seven percent of subjects were satisfied with the course. Ninety-four percent of subjects would participate in the course again and consider participating in more online PD offered by NASA. Seventy-one percent of subjects feel that MicroGX was more effective than other online PD in which they have participated. Effective components include content knowledge, student impact, resources, and support. All subjects agree this experience has inspired them to bring NASA content into the classroom, influenced them to make changes to their teaching activities, do not disagree they can immediately apply what they learned from this experience to their teaching about STEM, and do not disagree they will be more effective in teaching STEM introduced in this experience. All subjects do not disagree that the resources will be effective in increasing their students' interest in STEM topics and that this experience provided ideas for encouraging student exploration, discussion and participation. Based on the finding of this study, recommendations were made to aid future development of online PD and assist K-12 leaders in selecting future PD for their teachers. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152542

A Practice-based Model of STEM Teaching

Though there has been a rapid increase of women’s representation in law and business, their representation in STEM fields has not been matched. Researchers have revealed that there are several environmental and social barriers including stereotypes, gender bias, and the climate of science and engineering departments in colleges and universities that continue to block women’s progress in STEM. In this book, the authors address the issues that encounter women of color in STEM in higher education.

Theorising and Implementing Mobile Learning
This volume represents both recent research in pedagogical content knowledge (PCK) in science, technology, engineering and math (STEM), as well as emerging innovations in how PCK is applied in practice. The notion of "research to practice" is critical to validating how effectively PCK works within the clinic and how it can be used to improve STEM learning. As the need for more effective educational approaches in STEM grows, the importance of developing, identifying, and validating effective practices and practitioner competencies are needed. This book covers a wide range of topics in PCK in different school levels (middle school, college teacher training, teacher professional development), and different environments (museums, rural). The contributors believe that vital to successful STEM education practice is recognition that STEM domains require both specialized domain knowledge as well as specialized pedagogical approaches. The authors of this work were chosen because of their extensive fieldwork in PCK research and practice, making this volume valuable to furthering how PCK is used to enlighten the understanding of learning, as well as providing practical instruction. This text helps STEM practitioners, researchers, and decision-makers further their interest in more effective STEM education practice, and raises new questions about STEM learning.

Science Education for Diversity

The STEM Students on the Stage (SOS)TM model was developed by Harmony Public Schools with the goal of teaching rigorous content in an engaging, fun and effective way. In this book, you will learn that the STEM SOS model is not only helping students learn STEM content and develop 21st-century skills, but also helping teachers improve their classroom climate through increased student-teacher communication and a reduction in classroom management issues. There are at least two ways in which this book is innovative. First, you will find student videos and websites associated with QR codes; readers can use their QR readers to watch student videos related to the content in the chapter and see student e-portfolio samples at their Google sites. This provides the opportunity to see that what is discussed in the book actually happened. Second, the book is not about a theory; it is an actual implemented model that has evolved through the years and has been used in more than 25 schools since 2012. Every year, the model continues to be improved to increase its rigor and ease of implementation for both teachers and students. In addition to using the book as a classroom teacher resource and guide, it can also be used as a textbook in advanced graduate level curriculum and instruction, educational leadership, and STEM education programs. Therefore, STEM educators, leaders, pre-service and in-service teachers and graduate students will all benefit from reading this book. Appendices will be one of the favorite aspects of this book for teachers who are constantly looking for ready-to-use student and teacher handouts and activities. Full handouts, including formative and summative assessments materials and grading rubrics, will provide an opportunity for teachers and curriculum directors to understand the ideas and secrets behind the STEM SOS model. Lastly, STEM directors will find this to be one of the best STEM teaching model examples on the market because the model has fully accessible student and teacher handouts, assessment materials, rubrics and hundreds of student products (e-portfolios including video presentations and project brochures) online.
Middle School Girls and Their Perceptions of STEM Disciplines from the Perspective of Middle School Math and Science Teachers

Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects—science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.

Handbook of Research on Innovative Digital Practices to Engage Learners

This is a research study to explore how elementary teachers feel about integrating STEM education into their classrooms. Although the school district website provided some useful and relevant information about the STEM program, the skill competencies of the K-5 teachers and the challenges they faced in implementing the STEM curriculum was unknown. The researcher conducted a descriptive case study with a sample of 12 elementary teachers purposefully selected from a pool of K-5 teachers from two area schools focused on the teachers' perceptions of STEM education, their competencies, and professional development. Data collection consisted of interviews, document analysis, and field notes. The researcher analyzed data using the qualitative method. Findings from the study suggested that (a) teachers had different perceptions of STEM education based on prior experience, (b) most teachers lacked confidence in their knowledge and abilities to effectively integrate STEM, (c) teachers felt a need for STEM hands-on training and professional development, and (d) teachers did not have enough time, leadership, and proper guidance to integrate STEM effectively. The findings have broad implications for the field of educational technology and future research. The researcher recommends skilled STEM leadership that can drive curriculum development, as well as teacher preparation that supports STEM programs.

Optimizing STEM Education With Advanced ICTs and Simulations
Over the past decade, integrated STEM education research has emerged as an international concern, creating around it an imperative for technological and disciplinary innovation and a global resurgence of interest in teaching and learning to code at the K-16 levels. At the same time, issues of democratization, equity, power and access, including recent decolonizing efforts in public education, are also beginning to be acknowledged as legitimate issues in STEM education. Taking a reflexive approach to the intersection of these concerns, this book presents a collection of papers making new theoretical advances addressing two broad themes: Transdisciplinary Approaches in STEM Education and Bodies, Hegemony and Decolonization in STEM Education. Within each theme, praxis is of central concern including analyses of teaching and learning that re-imagines disciplinary boundaries and domains, the relationship between Art and STEM, and the design of learning technologies, spaces and environments. In addition to graduate research seminars at the Masters and PhD levels in Learning Sciences, Science Education, Educational Technology and STEM education, this book could also serve as a textbook for graduate and pre-service teacher education courses.

Teacher Professional Development

Girls lose interest in science and math and other STEM disciplines (science, technology, engineering, and math) during the middle school years. This loss of interest has affected girls and the representation of women in STEM careers. The purpose of the study was to investigate the role that middle school science and math teachers have in shaping girls’ attitudes and motivation, and their perception of girls. This study gathered data through a mixed-methods approach. Instruments used in this study included a Google survey consisting of Likert scale questions and individual interviews with participants. The study asked three research questions: 1. In suburban middle schools, is there a gender difference among students in STEM activities or subjects? 2. Do middle school teachers treat boys differently from girls in reinforcing their self-image of ability in math and science? 3. Are there gender differences in middle school students’ perceptions of their abilities in math and science? The results of this study indicate that middle school girls do not have a negative perception towards STEM, science, or math as perceived by their teachers. Middle school girls are participating in science and math, often take the initiative when working in groups, and pursue leadership roles in groups. This study also has proven that girls are called upon just as much as boys in these subject areas, and girls do not shy away from challenging work as compared to boys. Girls are also more likely to finish their assignments in an organized and efficient way. Teachers are cognizant of the role that they play in helping their students reach their true potential in STEM subjects, especially girls. Teachers in the study encouraged all their students to take risks in the classroom when completing challenging STEM related lessons, and participation among boys and girls were mostly the same at this age level, with only a slight variation. Responses from middle school teachers suggested that they provide substantial support and encouragement to girls in STEM, a finding that is very different from other studies and research that has previously been conducted.
K-12 STEM Education

Federal and state funding agencies have invested billions of dollars into secondary STEM (Science, Technology, Education, Mathematics) educational reform over the past decade. This volume addresses the interplay of external and internal variables associated with school reform and how this dynamic has impacted many efforts.

Pedagogical Content Knowledge in STEM

The improvement of science education is a common goal worldwide. Countries not only seek to increase the number of individuals pursuing careers in science, but to improve scientific literacy among the general population. As the teacher is one of the greatest influences on student learning, a focus on the preparation of science teachers is essential in achieving these outcomes. A critical component of science teacher education is the methods course, where pedagogy and content coalesce. It is here that future science teachers begin to focus simultaneously on the knowledge, dispositions and skills for teaching secondary science in meaningful and effective ways. This book provides a comparison of secondary science methods courses from teacher education programs all over the world. Each chapter provides detailed descriptions of the national context, course design, teaching strategies, and assessments used within a particular science methods course, and is written by teacher educators who actively research science teacher education. The final chapter provides a synthesis of common themes and unique features across contexts, and offers directions for future research on science methods courses. This book offers a unique combination of ‘behind the scenes’ thinking for secondary science methods course designs along with practical teaching and assessment strategies, and will be a useful resource for teacher educators in a variety of international contexts.

The Next Generation of STEM Teachers

This edited volume focuses on the reform and research of STEM education from international perspectives considering the sociocultural perspectives of different educational contexts. It shows the impact of political and cultural contexts on the reform of science education.

STEM Integration in K-12 Education

STEM in Science Education and S in STEM

Reflecting the very latest theory on diversity issues in science education, including new dialogic approaches, this volume explores the subject from a range of perspectives and draws on studies from around the world. The
work discusses fundamental topics such as how we conceptualize diversity as well as examining the ways in which heterogeneous cultural constructs influence the teaching and learning of science in a range of contexts. Including numerous strategies ready for adoption by interested teachers, the book addresses the varied cultural factors that influence engagement with science education. It seeks answers to the question of why increasing numbers of students fail to connect with science education in schools and looks at the more subtle impact that students’ individually constructed identities have on the teaching and learning of science. Recognizing the diversity of its audience, the book covers differing levels and science subjects, and examines material from a range of viewpoints that include pedagogy, curricula, teacher education, learning, gender, religion, and ICT, as well as those of in-service and trainee teachers at all levels.

Cracking the code

Education is vital to the progression and sustainability of society. By developing effective learning programs, this creates numerous impacts and benefits for future generations to come. K-12 STEM Education: Breakthroughs in Research and Practice is a pivotal source of academic material on the latest trends, techniques, technological tools, and scholarly perspectives on STEM education in K-12 learning environments. Including a range of pertinent topics such as instructional design, online learning, and educational technologies, this book is an ideal reference source for teachers, teacher educators, professionals, students, researchers, and practitioners interested in the latest developments in K-12 STEM education.

Teacher Perceptions of Inquiry and STEM Education in Bangladesh

This book provides key insights into how educational leaders can successfully navigate the turbulence of political debate surrounding leading student assessment and professionalised practice. Given the highly politicised nature of assessment, it addresses leaders and aspiring leaders who are open to being challenged, willing to explore controversy, and capable of engaging in informed critical discourse. The book presents the macro concepts that these audiences must have to guide optimal assessment policy and practice. Collectively, the chapters highlight important assessment purposes and models, including intended and unintended effects of assessment in a globalised context. The book provides opportunities to explore cultural similarities and particularities. It invites readers to challenge taken-for-granted assumptions about ourselves and colleagues in other settings. The chapters highlight the cultural clashes that may occur when cross-cultural borrowing of assessment strategies, policies, and tools takes place. However, authors also encourage sophisticated critical analyses of potential lessons that may be drawn from other contexts and systems. Readers will encounter challenges from authors to deconstruct their assessment values, beliefs, and preconceptions. Indeed, one purpose of the book is to destabilise certainties about assessment that prevail and to embrace the assessment possibilities that can emerge from cognitive dissonance.
Get Free Science Teachers Perceptions Of Stem Education

Proceedings of AC 2017

"This book is a pivotal source of academic material on the latest trends, techniques, technological tools, and scholarly perspectives on STEM education in K-12 learning environments. Including a range of pertinent topics such as instructional design, online learning, and educational technologies"--

Handbook of Research on Using Educational Robotics to Facilitate Student Learning

Engineering Instruction for High-Ability Learners in K-8 Classrooms is an application-based practitioners' guide to applied engineering that is grounded in engineering practices found in the new Next Generation Science Standards (NGSS) and the Standards for Engineering Education. The book provides educators with information and examples on integrating engineering into existing and newly designed curriculum. The book specifies necessary components of engineering curriculum and instruction, recommends appropriate activities to encourage problem solving, creativity, and innovation, and provides examples of innovative technology in engineering curriculum and instruction. Additionally, authors discuss professional development practices to best prepare teachers for engineering instruction and provide recommendations to identify engineering talent among K-8 students. Finally, the book includes a wealth of resources, including sample lesson and assessment plans, to assist educators in integrating engineering into their curriculum and instruction.

Engineering in K-12 Education

Teaching Primary Science Constructively helps readers to create effective science learning experiences for primary students by using a constructivist approach to learning. This best-selling text explains the principles of constructivism and their implications for learning and teaching, and discusses core strategies for developing science understanding and science inquiry processes and skills. Chapters also provide research-based ideas for implementing a constructivist approach within a number of content strands. Throughout there are strong links to the key ideas, themes and terminology of the revised Australian Curriculum: Science. This sixth edition includes a new introductory chapter addressing readers' preconceptions and concerns about teaching primary science.

Successful K-12 STEM Education

The role of technology in educational settings has become increasingly prominent in recent years. When utilized effectively, these tools provide a higher quality of learning for students. Optimizing STEM Education With Advanced ICTs and Simulations is an innovative reference source for the latest scholarly research on the integration of digital tools for enhanced STEM-based learning environments. Highlighting a range of pivotal topics such as mobile games, virtual labs, and participatory simulations, this publication is ideally designed
for educators, professionals, academics, and students seeking material on emerging educational technologies.

STEM Education

This book offers various perspectives on the complex and crosscutting concepts of the science, technology, engineering, and mathematics (STEM) disciplines in the classroom context. Presenting empirical studies, it reveals how researchers in the Asia-Pacific Region planned and implemented STEM education in the classroom. Further, it discusses the assessment of STEM learning to clarify what important elements should be included and how researchers and educators frame and design assessment tools. The book consists of four parts: potential and trends in STEM education; teachers' practical knowledge for STEM teaching; STEM teaching practices; and assessment of STEM learning. Providing evidence on developing curriculums, implementing instructional practices and educating classroom teachers, it is intended for readers wanting to explore STEM education from multiple perspectives.

Engineering in Pre-College Settings

This book focuses on teaching and learning with mobile technologies, with a particular emphasis on school and teacher education contexts. It explains a robust, highly-acclaimed contemporary mobile pedagogical framework (iPAC) that focuses on three distinct mobile pedagogies: personalisation, authenticity and collaboration. The book shows how mobile pedagogical practice can benefit from use of this framework. It offers numerous cutting-edge research resources and examples that supplement theoretical discussions. It considers directions for future research and practice. Readers will gain insights into the potential of current and emerging learning technologies in school and teacher education.

Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education

Designing and Teaching the Secondary Science Methods Course

Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the
committee addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it. The recommended indicators provide a framework for Congress and relevant deferral agencies to create and implement a national-level monitoring and reporting system that: assesses progress toward key improvements recommended by a previous National Research Council (2011) committee; measures student knowledge, interest, and participation in the STEM disciplines and STEM-related activities; tracks financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels; provides information about the capabilities of the STEM education workforce, including teachers and principals; and facilitates strategic planning for federal investments in STEM education and workforce development when used with labor force projections. All 14 indicators explained in this report are intended to form the core of this system. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? summarizes the 14 indicators and tracks progress towards the initial report's recommendations.

Monitoring Progress Toward Successful K-12 STEM Education

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.

Improving K-12 STEM Education Outcomes through Technological Integration

This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods.

Assessment in Education

Theorising STEM Education in the 21st Century is a book that captures the essence of Science, Technology, Engineering and Mathematics and the intricacies of STEM education in the contemporary society. It explores STEM
as an interdisciplinary field as well as the individual disciplines that make up STEM. This ensures the field of
STEM as a whole is theorised. The book provides critical insight on STEM education from Cairo to Cape Town or
from America to Indonesia. With a team of authors from universities across the world, the book is a vital
contribution to critical scholarship on STEM education in contemporary times.

Copyright code: de0313173285913fd79854ae883ee735